Monitoring, preventing and controlling rock burst in deep coal mines

Prof. Yun-liang Tan

Dr. Shan-chao Hu

Shandong University of Science and Technology Email:yunliangtan@163.com

Content

- > Introduction
- > Main investigations
 - ✓ Risk estimation
 - Monitoring and early warning
 - ✓ Risk relief
- > Conclusions

Introduction

- > As mining immigrates to depth, rock burst or coal bump risk gets higher and higher.
- The buried depth of 177 coalmines reaches more than 800 m in China, and rock burst is one of the worst disasters in deep coalmines.

Introduction

Rock burst disaster is strongly disruptive, and it may bring out roadway destroyed.

Risk evaluating, monitoring and controlling of deep rock burst is a long term task in coal mining engineering.

Introduction

Content

- > Introduction
- > Main investigations
 - ✓ Risk evaluation
 - Monitoring and early warning
 - ✓ Risk elimination
- > Conclusions

Viscoelastic nonlinear mechanism of energy accumulation and release of deep surrounding rock

Curve b
$$\varepsilon(t) = \left[\frac{1}{E_1} + \frac{1}{E_2}(1 - e^{-\frac{E_2}{\eta_t}t})\right]\sigma_0 + \frac{\sigma_0 - \sigma_{s1}}{\eta_2}t, \sigma_{s1} \le \sigma_0 \le \sigma_{s2}$$

Curve c
$$\varepsilon(t) = \left[\frac{1}{E_2} + \frac{1}{E_2}(1 - e^{-\frac{E_2}{n}t})\right]\sigma_0 + \frac{\sigma_0 - \sigma_{s1}}{n_2}t + \frac{\sigma_0 - \sigma_{s2}}{\eta_3}t^n, \sigma_0 \ge \sigma_{s2}$$

Mining disturbance

Stress redistribution

(Nonlinear energy accumulation>

Energy reaccumulation

Surrounding rock failure (energy accumulation > release+dissipation)

Energy release, surrounding rock failure

Time effect of energy accumulation and release

Unloading impact energy rate index

- □Getting the triaxial compressive strength, σ_c , at the confining pressure of σ_h .
- □Unloading confining pressure when the axial pressure is about 85% σ_c .

Step 2

Loading-unloading curve

Step 3

 $W_{ST} = \frac{U_{e1} + 2U_{e3}}{\left(U_{d1} + 2U_{d3}\right) \cdot D_{T}}$

Energy consumed after peak stress

Duration of dynamic fracture

Strain energy accumulated before unloading

When W_{ST} <3, no rockburst risk;

When $3 \le W_{ST} < 100$, weak rockburst risk;

When $W_{\rm ST} \ge 100$, strong rockburst risk.

Impact energy rate index of combined coal-rock

Step 1

$$h_1 = \frac{0.1H_1}{H_1 + H_2 + H_3}$$
 $h_3 = \frac{0.1H_3}{H_1 + H_2 + H_3}$

$$h_2 = \frac{0.1H_2}{H_1 + H_2 + H_3}$$

$$h_3 = \frac{0.1H_3}{H_1 + H_2 + H_3}$$

 H_1 —the height of coal seam;

 H_2 —the hard roof height;

 H_3 —the hard floor height.

combined sample

The new evaluation index system of rock burst risk of deep coal seam

Indices	No rock burst risk	Low rock burst risk	High rock burst	Note
Duration of dynamic fracture	D _T >500	$50 < D_T \le 500$	D _T ≤50	
Elastic strain energy index	W _{ET} <2	2≤W _{ET} <5	W _{ET} ≥5	C h i n a
Bursting energy index	K _E <1.5	1.5≤K _E <5	K _E ≥5	standard
Uniaxial compressive strength	R _C <7	7≤R _C <14	R _C ≥14	
Unloading impact energy rate index	W _{ZT} <6	6≤W _{ZT} <180	W _{ZT} ≥180	New
Combined coal-rock impact energy rate index	W _{ZT} <3	3≤W _{ZT} <100	W _{ZT} ≥100	New

Ŷ

Evaluation approach

Strain-mode rock burst

Abutment pressure distribution

Judgement flow chart

Index choice

China standard				Added index
Duration of dynamic fracture	Elastic strain energy index	Bursting energy index	Uniaxial compressive strength	Unloading impact energy rate index 1

Hard roof weighting aroused rock burst

Rationale

Strength criterion:

$$\sigma/[R_t] > 1$$

Energy criterion of system instability:

$$-\Delta E - \Delta G > 0$$
;

$$\delta^2 U \leq 0$$

Coal thrown criterion:

$$F_{xt} - F_{zt} > 0$$

Necessary condition

Sufficient condition

Index choice

Duration of dynamic fracture

Elastic strain energy index

Bursting energy index

China standard

Uniaxial compressive strength

Combined coalrock impact energy rate index 11

Added index

> Fault aroused rock burst

Rationale

Superimposed pressure curve

Stress distribution around the fault

Mechanical model

Index
choice

	China standard			Added index	
Fault slip	Duration of dynamic fracture	strain	enerov inaev	Uniaxial compressive strength	Unloading impact energy rate index
No fault slip	Duration of dynamic fracture	strain	anaray inaay	Uniaxial compressive strength	Combined coal- rock impact energy rate index 12

The new evaluation index system of rock burst risk of deep coal seam

Indices	No rock burst risk	Low rock burst risk	High rock burst risk	Note
Duration of dynamic fracture	D _T >500	$50 < D_T \le 500$	D _T ≤50	
Elastic strain energy index	W _{ET} <2	2≤W _{ET} <5	W _{ET} ≥5	C h i n a
Bursting energy index	K _E <1.5	1.5≤K _E <5	K _E ≥5	standard
Uniaxial compressive strength	R _C <7	7≤R _C <14	R _C ≥14	
Unloading impact energy rate index	W _{ZT} < 6	6≤W _{ZT} <180	W _{ZT} ≥180	New
Combined coal-rock impact energy rate index	W _{ZT} <3	3≤W _{ZT} <100	W _{ZT} ≥100	New

13

Optimal fuzzy assessment model

Membership matrix of the indices:

$$S_{5\times 3} = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \\ S_{41} & S_{42} & S_{43} \\ S_{51} & S_{52} & S_{53} \end{bmatrix} \qquad \begin{array}{c} \overline{D}_j = u_j \left\{ \sum_{i=1}^5 \left[W_i \left(r_i - S_{ij} \right) \right]^2 \right\}^{\frac{1}{2}} \\ \overline{V} \text{ is membership matrix after normalization;} \\ \overline{U} \text{ is membership matrix to each type;} \\ \overline{W} \text{ is weight vector of the indices.} \end{array}$$

Generalized Euclidean distance weighted by u_i :

$$\overline{D}_{j} = u_{j} \left\{ \sum_{i=1}^{5} \left[W_{i} \left(r_{i} - S_{ij} \right) \right]^{2} \right\}^{\frac{1}{2}}$$

W is weight vector of the indices.

Objective min
$$\{F(u_j)\}=\min \sum_{j=a_1}^{a_2} \{u_j^2 \sum_{i=1}^n [W_i(r_i-S_{ij})]^2\}$$
 Constraint condition: $\sum_{j=a_1}^{a_2} u_j = 1$

Optimal fuzzy assesment is by

$$\boldsymbol{u}_j = \left[\boldsymbol{D}_j^2 \sum_{j=a_1}^{a_2} \boldsymbol{D}_j^{-2} \right]^{-1}$$

Example: No. 10 coal seam of Da'anshan Coal Mine is located in the axial of syncline, and strain rock burst occurs easily. Its related burst indexes are as follows:

 D_T =432ms (Weak) , W_{ET} =5.332 (Strong) , K_E =2.632 (Weak) , R_C =27.28MPa (Strong) , W_{ST} =132ms⁻¹ (Strong) .

According to optimal fuzzy identification model, their membership degrees are as follows: $u_1=0.01$, $u_2=0.37$, $u_3=0.61$, No. 10 coal seam had strong burst proneness.

Precursory features and monitoring approaches

Types	Precursory features	Monitoring methods
Strain-mode rock burst	 A long stress rising period, the intensity and pulse number of electromagnetic radiation increase continuously. A energy accumulation period exists, where both the frequency and energy of microseismic event are small. 	electromagnetic radiation, online
Hard roof weighting aroused rock burst	 The static stress changes sharply. Micro cracks induced by roof sinking increase. Both the energy and frequency of AE event increase. 	Online stress, AE, microseismic and drilling.
Fault-slip type rock burst	 Continuous sliding-mutation: the energy grows exponentially. Sliding-stable-mutation: the energy experiences multiple peaks. 	Microseismic, online stress and drilling.

Development of monitoring equipment

Microseismic system

Software construction

Monitor data collecting software

Locator data collecting software

Advantages:

- ✓ Remote Intelligent Control of microseismic monitoring is achieved, by building the remote network monitoring stations.
- ✓ 'Relay' connection mode and 'Parallel' communication mode are applied to expand the monitoring scope, and the cost is saved.

KJ623 AE system

RS458 bus and Ethernet ring structure, are composed by switch board, access gateway, monitoring substations, AE sensors, etc.

Layout of AE sensors

Installation of AE sensor

KJ743 online stress monitoring system

Stress sensor

Drilling dynamometer

Wireless monitoring station

- ✓ Real-time wireless monitoring of mining pressure variation was achieved.
- ✓ The early warning of rock burst can be done by analyzing the variation of mining pressure.

22

YHC7.2-Z electromagnetic radiation system

Case studies

Strain-mode rock burst—No. 1304 face in Yangcheng Mine

Station layout

Hard roof weighting aroused rock burst—No. 1411 face in Huafeng Mine

Fault-slip aroused rock burst—No. 1411 face in Suncun Mine

General destress flowchart

Fig. 3 Sketch of strata fracture for ascending mining

Case study: No. 2 coal seam (2-6 m thickness) below No.3 coal seam was first exploited in the +570 Level of Muchengjian Coal Mine. Distance between two coal seams varied from 30.3 to 37.5 m. Rock bursts occurred in No. 3 coal seam, which has strong burst proneness.

Cross-section of No. 2 and No. 3 coal seams in Muchengjian Coal Mine

Exploration results

Roof fracture distribution of No.3 coal seam

Ascending mining can effectively reduce the risk of rock burst

After ascending mining approach was adopted

> Risk relief approaches

- ✓ Strain-mode rock burst: protective seam mining, pressure relief with large diameter drill, floor cutting and coal seam infusion.
- ✓ Hard roof weighting aroused rock burst: protective seam mining, deep hole blasting, pressure relief with large diameter drill, floor cutting and coal seam infusion.
- ✓ Fault-slip aroused rock burst: protective seam mining, pressure relief
 with large diameter drill and coal seam infusion.

> Development of risk relieving equipment

Drilling rigs

ZDY4200L

CMQS1-400/5.2S

ZLJ1100 ZDY4000S

33

Drilling bits

Drilling pipes

- ✓ The diameters of drilling bits range from 25 to 153 mm, with the torque of 150~250 N.m, the weld shear strength larger than 160 MPa and the yield strength larger than 392 MPa.
- ✓ The diameters of drilling pipes are 20~110 mm, with the bending strength larger than 500 MPa and the tension strength larger than 630 MPa.
 34

Combined relief technologies

Using large diameter drilling as a main measure, water injecting, floor cutting and borehole blasting as supplementary measures.

✓ The real-time monitoring of coal seam stress and early warning during the pressure relief can be achieved.

Case studies

Strain-mode rock burst—No. 1304 face in Yangcheng Mine

Large diameter drilling

- ✓ Diameter: 113 mm
- ✓ Spacing: 2 m
- ✓ Depth: 25 m

距工作面距离/m

Variation of front abutment pressure:

- The peak position is 16 m far away
- The peak stress is 2 MPa less than origin

Hard roof weighting aroused rock burst-- No. 1411 face in Huafeng Mine

Fault-slip aroused rock burst—No. 1411 face in Suncun Mine

Content

- > Introduction
- > Main investigations
 - ✓ Risk estimation
 - Monitoring and early warning
 - ✓ Risk relief
- > Conclusions

Conclusions

- ✓ Unloading impact energy rate index and combined coalrock impact energy rate index, are proposed to perfect the risk evaluation index-system of deep rock burst, which enhances the risk evaluating reliability.
- Each type rock burst has some specific precursory features, so some suitable monitoring approaches should be utilized for different rock burst.
- ✓ The pressure relieving and deep rock burst, should be combined both by ascending mining in large region, and by different relief approaches locally.

Thank you for your attentions

