FIVE- DIMENSIONAL WORKING POINT FOR ROOF BOLTING SYSTEM DESIGN IN COAL BURST CONDITIONS

ROCBOLT TECHNOLOGIES, CHINA ZIBO MINING GROUP

CONTENTS

- Project Background
- Coal Pillar Design
- Five- Dimensional Working Points Design
- Products Development
- Application Cases

PROJECT BACKGROUND

- Overburden Depth: 200-1200 m
- Coal Pillar Width: 20-40 m
- Coal Burst: Overburden Depth>400m
- Headgate and Tailgate Development
- Some Typical Burst Cases
- Problems to be solved

Bayangaole Mine

- 650m cover
- 30m pillar
 - Burst Record
 - First Burst
 - 240 m from Setup room
 - Affected area 60m outby face line
 - Front Chocks damaged, cable and bolt broken
 - Floor heave, roof sagging and rib spall.

Second Burst

- 453 m from Setup room
- ♦ Affected area 100m outby face line

Third Burst

- ♦ 680 m from Setup room
- Affected area 60m outby face line

Fourth Burst

- → 791m from Setup room
- Affected area 60m outby face line

0

PROJECT BACKGROUND

- Some Typical Burst Cases
 - Baiyangaole Burst: 15 Bursts
 - Tingnan 10 Bursts
 - Gaojiabao: 10 Bursts During Shaft Bottom and Main Development.
- Problems To be Solved
 - Pillar Size
 - Dynamic Roof Bolting System

- Larger Pillar Size
- Smaller Pillar Size ---Burst free
- Smaller Pillar Size---Harmless Burst

Larger Pillar Size

- Initiation Point Moves Further inby Face Line
- Propagation Zone Some Distance inby Face Line
- Burst Intensity Increases and Frequecy Decrease
- Large Enough to be Burst Free
- Not Feasible to Mine Operation

Smaller Pillar Size ---Burst free

- First Longwall Retreating
- Tensile Fractured zone(1-2m)
- Compressive Fractured Zone(11m)
- Yield Zone(13m)
- Pillar Size and Tailge development
 - 5-8m
- Application

Smaller Pillar Size---Harmless Burst

FIVE-DIMENSIONAL WORKING POINT BOLTING DESIGN

- Five Dimensions
 - Support Capacity
 - Displacement And Yieldable Bolt
 - Length of Bolt
 - Installed Load
 - Energy release and Absorption for Burst Conditions

FIVE-DIMENSIONAL WORKING POINT BOLTING DESIGN

- Five Dimensions--Static
 - Support Capacity
 - Displacement And Yieldable Bolt
 - Length of Bolt
 - Installed Load

FIVE-DIMENSIONAL WORKING POINT BOLTING DESIGN

- Five Dimensions--Dynamic
 - Energy release and Absorption
 - Working Point Drifting
 - Energy Absorption
 - Energy Releasing

PRODUCTS DEVELOPMENT

- High Energy Absorption Steel Development
 - Increase Impact Energy Index from 48J to 150J
- Energy Release Parts Development
 - Yield Tube

APPLICATION CASES

Application Cases

APPLICATION CASES

Application Cases

APPLICATION CASES

- Application Cases
 - More than 10 tailgates in three mines have successfully supported.
 - Harmful Coal bursts have not happed during the tailgate development and longwall retreating
 - In some cases, although some small bumping, tailgate support absorbs and releases the dynamic energy.
 - Tailgate deformation is minimum, no maintenance team is required any more.

