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List of symbols

A, B, C Rock blocks

A0, B0, C0 Action points of lateral thrust

H, L, W Thickness, length and width of rock

block (m)

h0 Thickness-to-length ratio of rock block

(h0 = H/L)

Lx Length of fault-pillar (m)

a Thickness of voussoir arch (m)

d0, d1 Vertical deflections of rock blocks B and

C (m)

aA, aB, aC Rotation angles of rock blocks A, B, and

C (�)
h Angle of fault plane in vertical direction

(�)
u, uf Friction angles of rock and fault plane

(�), 0.85 for most rocks and faults

c Unit weight of rock (N/m3), 2.5 9 104

N/m3 for most rocks

p Applied stress on rock block from

overlying strata (Pa)

q Total applied stress on rock block from

overlying strata and the rock block

(q = p?cH) (Pa)
rc Uniaxial compressive strength (UCS) of

rock (Pa)

r, s Compressive stress and shear stress at

fault plane (Pa)

f(lx) Static stress within fault-pillar (Pa)

P Total load on rock block

(P = pLW ? cHLW = qLW) (N)

T Lateral thrust (N)

R0–0, R0–1, R1–2 Shear forces between rock blocks (N)

R, R1 Resistance forces of collapsed and

broken strata (N)

Tf, Rf Normal force and shear force at fault

plane (N)

1 Introduction

Rock bursts are currently considered to be one of the most

severe threats to underground safety in coal mining. When

mining activities approach faulted areas, rock bursts are

more likely and thus often result in casualties. For instance,

due to a fault, the extraction of longwall panel 25110 in the

Yuejin coalmine suffered 20 rock bursts (Li et al. 2013).

Therefore, rock bursts around faulted areas have been

studied worldwide (Islam and Shinjo 2009; Ji et al. 2012;

Li et al. 2011; Michalski 1977; Pan et al. 1998). The focus

of these studies was the fault, while the fault-pillar (the

coal pillar between the fault plane and the face line or

gateway), has often been overlooked. The concept of fault-
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pillar induced rock bursts (FPIRB) was first proposed and

analysed by Li et al. (2013, 2014) who investigated the

mechanisms underpinning FPIRB behaviour and calculated

the static stress within the fault-pillar through a fault-pillar

model, which proved that high static stress within the fault-

pillar is a key factor inducing rock bursts. Unfortunately,

the voussoir beam structure in their model was based on

Qian (1982). Thus, the arch compression thickness and

buckling failure of the voussoir beam were neglected. Also,

the lateral thrust and shear forces were only approximate.

As a result, the accuracy of the static stress calculated

through their model is poor.

This research is aimed at improving the fault-pillar

model to investigate the static stress within the fault-pillar

in a more precise way, and analyse which parameter in-

fluences the static stress most from a theoretical view-

point. To this end, the voussoir beam structure developed

by Qian et al. (1994a) is used and an enhanced fault-pillar

model is proposed considering the voussoir arch thick-

ness. Although Qian et al. (1994a) deduced a more rea-

sonable lateral thrust and shear forces, they only obtained

limiting conditions against sliding failure and crushing

failure. Hence, before analysis of the fault-pillar model,

the limiting condition against buckling failure is firstly

deduced.

2 Background

The voussoir beam analogue was first proposed by Evans

(1941). Subsequently Beer and Meek (1982), Sofianos

(1996), Diederichs and Kaiser (1999), Brady and Brown

(2004) published seminal work on this problem (Fig. 1a).

More recently, the voussoir beam was still studied by

scholars, like Talesnick et al. (2007); Tsesarsky (2012). In

China, Qian (Chien 1981; Qian 1981, 1982) proposed a

voussoir beam structure specific to longwall mining based

on the investigation of the subsidence of overlying strata at

longwall working areas (Fig. 1b, c). This kind of structure

was visualised by Ju and Xu (2013) through a physical

simulation. Limiting conditions, shear forces, and lateral

thrust in the structure were general at best since the

voussoir arch thickness was neglected and the rotation

angle of adjacent blocks was assumed equal. Subsequently

Qian et al. (1994a) considered the voussoir arch thickness

and did a reasonable analysis of key blocks in the structure

so that these problems were solved (Fig. 2). The structure

was applied to field practice and verified and validated

(Qian et al. 1994b; Cao et al. 1998).

According to Qian et al. (1994a), the voussoir arch

thickness, lateral thrust, and shear forces are given by:

a ¼ 1

2
ðH � L � sin aBÞ

T ¼ 2

2h0 � sin aB
� q � L

R0�0 ¼
4h0 � 3 sin aB
2ð2h0 � sin aBÞ

� q � L

R0�1 ¼ R1�2 ¼
sin aB

2ð2h0 � sin aBÞ
� q � L

8
>>>>>>>>><

>>>>>>>>>:

: ð1Þ

Limiting conditions against sliding failure and crushing

failure are given by:

F:S:slideðh0; aBÞ ¼
3

4
sin aB � h0 þ tan/� 0; ð2Þ

F:S:crushðh0; aBÞ ¼
1

4
g � ðsin2 aB � 3h0 � sin aB þ 2h20Þ

� q

rc
� 0; ð3Þ

where g is the squeezing coefficient of the block abutment.

g, which is obtained experimentally, is defined as the ratio

of the squeezing strength of the block abutment to the UCS

of the rock block. The squeezing strength is the strength

when the block abutment is stressed by normal compres-

sive stress and shear stress simultaneously.

Buckling failure will occur when the critical deflection

of block B is exceeded. To avoid buckling failure, the

voussoir arch thickness and the moment arm ðH � d1 � aÞ

nt T
z0

δ

nt
T

s/2

nt
T

a

b

c

Fig. 1 Voussoir beam models by a Sofianos (1996) and b, c Qian

(1981). b Complete voussoir beam structure demonstrating movement

and behaviour of overlying strata after longwall mining, c voussoir

beam structure for a certain roof bed
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(Fig. 2) of the reaction force (T) must be positive values.

Necessary conditions are:

a ¼ 1

2
ðH � L � sin aBÞ[ 0

ðH � d1 � aÞ[ 0

(

: ð4Þ

According to Qian et al. (1994a), the deflections of

blocks B and C are given by:

d0 ¼ L � sin aB; d1 ¼
5

4
L � sin aB: ð5Þ

Substituting Eq. (5) into Eq. (4), the criterion against

buckling failure is given by:

F:S:buckleðh0; aBÞ ¼ � 3

2
sin aB þ h0 [ 0: ð6Þ

Note Eqs. (2), (3), and (6) are used to judge whether the

voussoir beam structure is stable so as to determine which

fault-pillar model to apply in Sect. 3. Equation (1) is used

to calculate the lateral thrust and shear forces that are used

in the fault-pillar model.

It is well known that for normal stresses of up to

200 MPa the coefficient of friction is approximately 0.85

for most rocks and faults (Byerlee 1978). Through

squeezing experiments on rock blocks, Huang et al. (2000)

concluded that the squeezing coefficient might be 0.36–0.42

(0.4 on average). Hence, tanu and g are set to 0.85 and 0.4,

respectively. Limiting cases for beam stability are illus-

trated in Fig. 3. It is seen that there is a maximum load

(q) the beam allows for certain h0 and aB and that beams

with larger deflections are more likely to fail.
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δ0 αC

δ1
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1/2 a
TB
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R0-0

R1

R1-2
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T

A’

B’ C’

1/2 L 1/2 L 1/2 L 1/2 L

Fig. 2 Model of key blocks B

and C in the voussoir beam

structure (Qian et al. 1994a).

a Geometric disposition when

rock blocks rotate, b displaced

state of, and stresses on, key

blocks
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Fig. 3 Limiting cases for beam stability: a critical limits against

sliding failure [the red solid line, corresponds to Eq. (2)] and buckling

failure [the black solid line corresponds to Eq. (6)], b critical limits

against crushing failure. In b, the lines are calculated by using Eq. (3).
Note that tanu [in Eq. (2)] and g [in Eq. (3)] are set to 0.85 and 0.4

Mechanical Analysis of Static Stress…

123



3 Mechanical Analysis of a Fault-Pillar

Consider a normal case of FPIRB, as shown in Fig. 4: the

longwall face advances from right to left. The fault-pillar,

located between the face line and the geological fault, bears

a high static stress. The presence of a hard/thick stratum is

assumed in the simplified form of a beam to establish the

fault-pillar model. The occurrence of such a stratum is

quite common (Xuan et al. 2014). Since the hard/thick

stratum may, or may not, form a voussoir beam structure,

there are two cases tested in the model. Either the voussoir

beam structure is formed and maintained, or it is absent

(Fig. 5). In both cases, block A will inevitably rotate when

the pillar length is reduced to a certain value.

3.1 A Voussoir Beam Structure is Present (P.)

In brief, this case is referred to as ‘P.’: before rotation of

block A (referred to as ‘B.R.’) (Fig. 5a), a compression

arch develops within block B, rising from the left to the

right. There is compressive stress and shear stress on the

fault plane and a lateral thrust and shear force at the right-

hand side of block A. At the top and bottom of block A,

there is a distributed load from the overlying strata and a

resistance stress from the fault-pillar. After rotation of

block A (referred to as ‘A.R.’) (Fig. 5b), a compression

arch develops within block A, rising from the abutment at

the fault plane to the high point at the right side of block A.

For the sake of simplicity, the compressive stress (r), shear
stress (s), and distributed load (p) are assumed to have been

uniformly distributed.

Block A will slide at the fault plane and rotate when the

actual shear stress exceeds the maximum shear stress per-

mitted on the fault plane.Hence, the criterion against rotation

of block A (referred to as ‘rotation criterion’) is given by:

F:S:rotation�P: ¼ r � tan/f � s� 0: ð7Þ

Mechanical equilibrium of block A requires, before ro-

tation

and after rotation

Tf � cos hþ Rf � sin h� T ¼ 0
Z Lx

0

f ðlxÞdlx þ Rf � cos hþ R0�1 � Tf � sin h

� p � ðL� H � tan hÞ � c � H � L� 1

2
H � tan h

� �

¼ 0

Z Lx

0

f ðlxÞ � lxdlx þ T � H � d0 �
1

2
a

� �

þ R0�1 � L

� Tf � a �
1

2 cos h
� 1

3
c � H3 � tan2 h

� 1

2
ðpþ c � HÞ � ðL2 � H2 � tan2 hÞ ¼ 0:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð9Þ

3.2 A Voussoir Beam Structure is Absent (A.)

This case is briefly referred to as ‘A.’. In case A., block B

has collapsed. Thus, there is no force in effect between

blocks A and B. The problem may be analysed in terms of

the problem geometry illustrated in Fig. 5c, d. Before ro-

tation, the pillar itself bears load. However, after rotation,

the pillar, together with the collapsed and broken strata,

supports the load.

Fault plane

Rotate and 
subside

Roof 
block A

Roof 
block B

Horizontal stress
Superposition 
of static and 

dynamic stress

Critical stress 

Static 
stress Fault-pillar

Interaction

Fault slide

Pillar failure

Fig. 4 Sketch of the FPIRB mechanism (Li et al. 2014)

r � H � s � H � tan h� T ¼ 0Z Lx

0

f ðlxÞdlx � s � H � R0�0 � r � H � tan h� p � L� H � tan hð Þ � c � H � L� 1

2
H � tan h

� �

¼ 0

Z Lx

0

f ðlxÞ � lxdlx þ
1

2
T � a� R0�0 � L� r � H2

2 cos2 h
� 1

3
c � H3 � tan2 h

� 1

2
pþ c � Hð Þ � ðL2 � H2 � tan2 hÞ ¼ 0

8
>>>>>>><

>>>>>>>:

: ð8Þ
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The equilibrium in Fig. 5c requires that the action points

of the load and f(lx) in the y-coordinate are the same

(maybe at point M0), which indicates that the stress dis-

tribution, f(lx), within the pillar was variable when the pillar

length decreases. Thus, the problem concerning the distri-

bution of f(lx) is fundamentally indeterminate and the exact

rotation criterion is difficult to obtain. In the extreme case,

block A rotates when the pillar length is less than one half

of the block length. The rotation criterion is given by:

F:S:rotation�A: ¼ Lx �
1

2
L[ 0: ð10Þ

Mechanical equilibrium of block A requires, before

rotation:
Z Lx

0

f ðlxÞdlx � p � ðL� H � tan hÞ � c � H � L� 1

2
H � tan h

� �

¼ 0

ð11Þ

and after rotation:

Z Lx

0

f ðlxÞdlx þ R� p � ðL� H � tan hÞ

�c � H � L� 1

2
H � tan h

� �

¼ 0

Z Lx

0

f ðlxÞ � lxdlx þ R � L� 1

3
c � H3 � tan2 h

� 1

2
ðpþ c � HÞ � ðL2 � H2 � tan2 hÞ ¼ 0

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

: ð12Þ

3.3 Guidelines on the Use of Equations

Figure 6 shows the process required to handle the problem

of interest here. First, we obtain the relevant parameters:

then, we judge whether, or not, a stable voussoir beam

structure is present by using Eqs. (2), (3), and (6). When
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Fig. 5 Fault-pillar model: a and b a voussoir beam structure is present, c and d a voussoir beam structure is absent. B.R. is before rotation of

block A, A.R. is after rotation of block A
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each of the equations is satisfied, case P. is used. Other-

wise, case A. is used. In case A., we judge whether block A

rotates by using Eq. (10). If not, choose Eq. (11) to cal-

culate the static stress (fav-B.R.-A.). Otherwise, introduce

parameters in Eq. (12) and output the static stress

(fav-A.R.-A.). In case P., we firstly introduce parameters to

Eq. (1) to obtain a, T, and R0–0. Then we introduce a, T,

R0–0, and other relevant parameters in Eq. (8) to obtain

fav-B.R.-P., r, and s. Then we introduce r, s, and uf in

Eq. (7) to judge whether, or not, block A rotates. If not,

output the static stress (fav-B.R.-P.). Otherwise, there is no

determinate solution to the problem.

4 Discussion

According to the fault-pillar model, the static stress within

the pillar is divided into four terms and calculated by

Eqs. (8), (9), (11), and (12), respectively. Note that each of

the four equations corresponds to a certain condition. In

theory, if the actual static stress distribution and related

parameters are determined, the static stress can be calcu-

lated and used to evaluate rock burst risk according to the

derivation process of the model. However, not all of the

equations have determinate solutions.

For a specific longwall panel, parameters L, Lx, H, h, p,
and c are obtained by physical measurement. Therefore,

when the distribution, f(lx), is confirmed or assumed, the

static stress in case A. can be solved by Eqs. (11) and

(12). In Fig. 5a or b, the lateral thrust and shear forces can

(or cannot) be calculated by Eq. (1) because the stress

state of the compression arch in Fig. 5a or b is the same as

(or different from) that in Fig. 2b. Hence, in case P. f(lx)

can be solved by Eq. (8) while there is no determinate

solution to Eq. (9), which is because there are five un-

known variables [Tf, Rf, f(lx), T, R0–1] in Eq. (9). In

summary, there are solutions to Eqs. (8), (11), and (12),

but not to Eq. (9).

To solve engineering problems, f(lx) is assumed to fol-

low a triangular load distribution which is the basis of the

subsequent discussion. This allows derivation of an aver-

age static stress, fav, in the fault-pillar. A correction coef-

ficient, K, is defined so that the actual average static stress

is Kfav. K is obtainable from a combination of theoretical

calculation and in situ pressure measurement. As an ex-

ample, the solution to Eq. (8) is given by:

START

Obtain parameters: 
Lx, L, H, p, γ, q, θ, αB, η, σc, φ, φf

Are Eqs. (2), (3) 
and (6) satisfied ?

Input: L, H, αB, φ, q, η, σc

YES
(stable beam,

case P.)

NO
(unstable beam,

case A.)

Input: L, Lx

Is Eq.(10) 
satisfied ?

Y
E

S
(c

as
e 

B
.R

.-A
.)

N
O

(c
as

e 
A

.R
.- A

.)

Input: Lx, L, H, p, γ, θ
Solve Eq.(11)

Output: fav-B.R.-A.

Input: Lx, L, H, p, γ, θ
Solve Eq.(12)

Output: fav-A.R.-A.

Input: L, H, αB, q
Solve Eq.(1)

Output: a, T, R0-0

Input: Lx, L, H, p, γ, θ,
a, T, R0-0

Solve Eq.(8)

Output: fav-B.R.-P., σ, τ

Input σ, τ, φf

Is Eq.(7) 
satisfied ?

Y
E

S
(c

as
e 

B
.R

.-P
.)

N
O

(c
as

e 
A

.R
.-P

.,
un

so
lv

ab
le

)

END

Output: fav-B.R.-P.

Output: 
no determinate solution

Fig. 6 Flowchart for the

calculation of static stress

within the fault-pillar. P. is the

case when a voussoir beam

structure is present, A. is the

case when a voussoir beam

structure is absent, B.R. is

before rotation of block A, A.R.

is after rotation of block A
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Parameters influencing the static stress include Lx, L, H,

q, aB, h, and h0 (where h0 = H/L). In the subsequent

paragraphs, the influence of these parameters on the static

stress is discussed. For simplicity, the fault angle is as-

sumed to be zero (h = 0).

By combining Eqs. (1) and (5) with Eqs. (8), (11), and

(12), the average static stress and rotation criterion are

given by:

fav�B:R:�P: ¼
3ð7h0 � 3 sin aBÞ
4ð2h0 � sin aBÞ

� q � L
2

L2x

fav�B:R:�A: ¼ q � L
Lx

fav�A:R:�A: ¼ q � 3L2

2ð3L� 2LxÞ � Lx

8
>>>>>><

>>>>>>:

: ð14Þ

F:S:rotation�P: ¼ � 3

8
ð7h0 � 3 sin aBÞ �

L

Lx

þ 1

4
ð8h0 � 5 sin aBÞ þ tan/f � 0

F:S:rotation�A: ¼ Lx �
1

2
L[ 0

8
>>>>>><

>>>>>>:

ð15Þ

It may be seen that the rotation criterion and the for-

mulae for static stress in case A. are simpler. Thus, case P.

became our focus. Figure 7 shows some examples illus-

trating the variation of static stress as obtained through

Eq. (14). In all cases, for the same Lx, the stresses in cases

with a larger value of L are higher. In case A., the stresses

are much lower. In case B.R.-P., stresses rise to maximum

values immediately before rotation. The maximum values

differ greatly for different aB and h0, whereas they are

equal for the same aB and h0 even if L were different,

which is because the values of aB and h0 determine the

critical ratio L/Lx that determines the rotation of block A, as

shown in Fig. 8. Figure 8 indicates that thick beams, under

small deflection, tend to rotate and the critical value of L/Lx
increases rapidly when aB rises to an extent almost suffi-

cient to induce buckling failure. Overall, the critical L/Lx
value differs greatly for different aB and h0, which is the

root cause of the difference in the maximum value of fav-

B.R.-P.. The coefficient 3ð7h0 � 3 sin aBÞ½ �= 4ð2h0 � sin aBÞ½ �
in fav-B.R.-P. varies from 2.625 to 2.8125 within various

ranges of aB and h0, which implies that this coefficient has

a limited influence on the static stress.

In case A.R.-P., f(lx) cannot be deduced from the use of

Eq. (9), as discussed above. By comparing Fig. 5b with

Fig. 5d, it is concluded that fav-A.R.-P. is less than fav-A.R.-A.

(i.e. fav�A:R:�P:\q � 3L2

2ð3L�2LxÞ�Lx), which implies that the

stress in case P. drops significantly upon rotation.
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Fig. 7 Variation of the average static stress versus pillar length.

a h0 = 0.7, aB = 10�; b h0 = 0.5, aB = 10�. Note that the ordinate is
in multiples of the total applied stress, q, in ‘Pa’. Data are calculated

by using Eq. (14) and the rotation of block A is based on Eq. (15) (i.e.

the rotation criterion), and tanuf is set to 0.85

fav ¼
1

2Lx � ð4Lx � 3H � tan hÞ � ½6R0�0 � ð2L� H � tan hÞ þ 6T � ðH � aÞ

þ6q � L � ðL� H � tan hÞ þ c � H3 � tan2 h�

r ¼ cos2 h
H � ð4Lx � 3H � tan hÞ � ½2R0�0 � ð3L� 2LxÞ � tan hþ T � ð4Lx � 3a � tan hÞ

þq � tan h � ðL� H � tan hÞ � ð3L� 4Lx þ 3H � tan hÞ � 2c � H2 � tan2 h � ðLx � H � tan hÞ�
s ¼ cos h

H � ð4Lx � 3H � tan hÞ � ½2R0�0 � ð3L� 2LxÞ þ T � ð3 H

cos2 h
� 3a� 4Lx � tan hÞ

þq � ðL� H � tan hÞ � ð3L� 4Lx þ 3H � tan hÞ � 2c � H2 � tan h � ðLx � H � tan hÞ�

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð13Þ
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In cases A. and P., the stress after rotation is normally

lower than the maximum stress in case B.R.-P.. For ex-

ample, in Fig. 7a the maximum value of fav-B.R.-P. exceeds

63q, while fav-A.R.-A. is lower than 16q and 26q when the

pillar length decreases to 1 m. Actually, within various

ranges of aB and h0, the critical ratio L/Lx all exceeds 3.5

[see Eq. (15) and Fig. 8] when tanuf = 0.85, which im-

plies that the maximum values of fav-B.R.-P. exceed

32q immediately before rotation of block A [see Eq. (14)]

among various values of aB, h0, L, and Lx.

From Eq. (3) and Fig. 3b, it may be seen that there is a

limited q for a stable voussoir beam structure. For instance,

maximum values of q are 0.0645 and 0.0270 rc in cases

where h0 = 0.7, aB = 10� and h0 = 0.5, aB = 10�.
Therefore, the maximum values of fav-B.R.-P. in Fig. 7a, b

reach approximately 4.11 and 3.32 rc, respectively. Under
such high stresses, a pillar normally fails. Note that the

aforementioned values are for the critical case when a

stable voussoir beam structure is on the verge of crushing

failure and the rotation of block A is imminent. Actual

values may be far lower.

Through this discussion, it is seen that stresses in case

B.R.-P. are the highest. Maximum values occur when a

stable voussoir beam structure is on the verge of crushing

failure and the rotation of block A is imminent. The values

of aB and h0 have the most influence on the maximum

stress values, and the maximum stress values are smaller in

cases with a smaller value of aB and a larger value of h0.

5 Conclusions

The fault-pillar model is a simplification of in situ mining-

geological conditions and contains many parameters. Some

of the parameters are difficult to obtain, or are not constant,

because of the complicated mining-geological conditions.

For example, the values can be investigated for the lengths

of blocks B and C in the voussoir beam structure but not

the length of the block next to the fault (i.e. block A). Also,

the thickness of the roof bed varies significantly, even for

the same longwall panel. In addition, it is almost impos-

sible to realise in situ conditions that are exactly the same

as those modelled. All of these factors prevent the use of

the model to calculate the static stress within the pillar with

precision. What is important is the estimation of the var-

iation of static stress and its main influencing parameters. If

possible, influencing parameters should be pre-controlled

to reduce the static stress as far as is possible so that rock

burst risk is concomitantly reduced.

The stress state within the fault-pillar fits one of four

cases: a voussoir beam structure is present and before/after

rotation of block A (B.R.-P./A.R.-P.), a voussoir beam

structure is absent and before/after rotation of block A

(B.R.-A./A.R.-A.). The stress in case B.R.-P. is much

higher than in the other cases. In all cases, the stress shows

a positive correlation with L/Lx. In case A., the stress is

affected by L and Lx. In case P., the influencing parameters

are aB, h0, L, and Lx, among which aB and h0 show the most

influence. The maximum stress values are smaller in cases

with a smaller value of aB and a larger value of h0.
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